注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

春暖人间的博客

轻轻地,春姑娘迈着轻快的步伐,悄悄地来到人间,带来了无限的生机和温暖……

 
 
 

日志

 
 

《一次函数与一元一次不等式》教学反思  

2014-05-17 22:04:18|  分类: 课堂教学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
一次函数与一元一次不等式》教学反思

函数与方程、不等式在初中数学教学中有重要地位,函数是初中数学教学的重点和难点之一。方程、不等式与函数综合题,历年来是中考热点之一,主要采用以函数为主线,将函数图象、性质和方程及不等式的相关知识进行综合运用,渗透数形结合的思想方法。

《一次函数与一元一次不等式》的内容是上一课内容的延续,一个问题的三种不同的表述是最难理解的,求不等式ax+b0的解集,等价于求x为何值时函数y=ax+b的值大于零,等价于求直线y=ax+bx轴上方的部分x的取值范围,同样的,求不等式ax+b0的解集,等价于求x为何值时函数y=ax+b的值小于零,等价于求直线y=ax+bx轴下方的部分x的取值范围。我在设计教学程序时,作了如下安排:用图象法求方程2x-6=0的解,进而研究求不等式2x-60的解集,转化为求x为何值时,函数y=2x-6的值大于0,转化为求x为何值时,直线y=2x-6x轴上方,在此基础上进行练习前置学习的训练,提升到一般情况:利用图象回答,x为何值时,方程mx+n=0的解,不等式mx+n0的解集,不等式mx+n0的解集,
    
本节课的成功之处:

1、结构严谨,环环相扣,层现清晰

    本节课用五个环节组织教学。环节一是知识的回顾,这部分复习了函数、方程、不等式的基础知识,引入部分简单过渡,激发兴趣,为后面作铺垫。环节二的问题是有关一次函数,一元一次方程和一元一次不等式的联系与区别。环节三的问题是一次函数、一元一次方程和一元一次不等式之间的相互转化,这两个环节的两个问题是姐妹题,加强了学生对一次函数图象的认识以及通过观察函数图象得出变量的范围,渗透数形结合的思想,同时由环节二的一次函数与一元一次方程过渡到环节三的一次函数与一元一次不等式,由浅入深地把函数、方程、不等式三者联系起来。然后过渡到本节课的难点即环节四:一次函数图象的灵活应用。环节四是实际问题的应用及其变式训练,这一环节的训练,旨在拓展深化,发展学生智能,让学生学会用函数与方程的思想来解决实际问题,通过对实际问题的分析,寻找出变量之间的函数关系,并能利用函数的图象和性质求出实际问题的答案。体会函数模型是解决实际问题的一种重要的数学模型,便于获得解决问题的经验。养成积极探索的学习态度,感受数学的应用价值,培养学数学用数学的观念,这也是本节课的知识点的拓展与提升。最后环节五的总结提高部分由学生讨论归纳,对整节课的内容进行回顾整理,让每一部分的内容重新清晰呈现。五个环节紧密联系,层层递进,环环相扣,清晰明了地突破重难点。

    2、体现学生的主体地位,把课堂还给学生

    在教学的过程中,学生是教学的主体,所以发挥学生的主动性相当的重要。本节课是在学生第一轮复习了函数、方程、不等式有关知识的基础上教学的,是学生学习的又一次综合与扩展。如何引导学生进一步研究解决函数、方程、不等式之间的联系与区别及三者相结合的综合题,是我设计本堂课时应特别注意的。我设计的教学方法是讲练结合,学生练习用了20-22分钟,学生小组讨论3-4分钟,老师大概讲了12-15分钟,引导。提问个别学生分析问题及回答问题约8-10分钟,整节课以学生的练习为主,留充分的时间和空间给学生思考。教师精讲多练,且能讲在关键处,注重引导学生分析问题并解决问题,师生互动较多,教学方式灵活多样,充分调动了学生学习的积极性。整节课充分体现了新课标的教学理念:教师为主导、学生为主体,把课堂还给学生。

    3、及时小结,及时反馈

    课堂教学是一个有序的教学过程,教材知识的内在逻辑顺序和学生认知结构发展的顺序决定了教学过程必须是一个循序渐进、环环相扣的过程。因此,对于每一环节的教学,我都能恰到好处进行点评、反馈及小结,总结该环节用到的知识点及其解决问题的方法与技巧,对教学目标中的思想内容、能力要求、知识要点进行简明扼要的梳理概括,这样既可概括前一个问题的主要内容,有助于学生理解、掌握,又能巧妙地引出后一个问题的讲解。起到承前启后的作用,使知识有机衔接起来,形成一个有序的整体,既可使整堂课的教学内容系统化,增强学生的整体印象,又可以促使学生的思维不断深化,诱发继续学习的积极性。

     课件精美,提高效率

    本课节主要是以PPT载体,中间穿插了几何画板,直观、形象、动态地展现知识的形成过程,刺激学生的感官,启发学生思维。通过课件,充分体现了数形结合,出了本节课的重点:方程或不等式的解实质就是函数值y取特殊值时对应自变量x的取值。从而使题目化难为简。另外对于一些重要地方用批注形式加以解释,引起学生的有意注意,让学生更容易理解、印象更深刻,大大提高了课堂教学的有效性。

     小组讨论,突破难点

    本节课的最亮点是环节四的变式练习的处理,我采用的方法是让学生通过小组讨论找出本题与问题3在解答上的异同,并要求学生把不同之处用另一颜色笔在问题3的求解过程的基础上改动,然后引导学生(个别提问)分析讲解,老师再用课件演示加以点评。学生通过此变式训练能发现对所得的函数结合自变量的取值范围及结合图像才能求得最值,学生更深刻地体会了数形结合的数学思想。数学课堂上也显示出情感态度价值,用集体的智慧突破本节课的难点,学生有了成功的喜悦。

    本节课的不足之处:

    环节三的巩固练习的反馈,因受时间限制,我采用课件演示讲解。如果用实物投影让学生自己讲自己的答案,教师更深入一点点评,教学效果会更好。

  评论这张
 
阅读(53)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018